3.417 \(\int \frac{1}{(c+\frac{a}{x^2}+\frac{b}{x}) x^2} \, dx\)

Optimal. Leaf size=36 \[ \frac{2 \tanh ^{-1}\left (\frac{\frac{2 a}{x}+b}{\sqrt{b^2-4 a c}}\right )}{\sqrt{b^2-4 a c}} \]

[Out]

(2*ArcTanh[(b + (2*a)/x)/Sqrt[b^2 - 4*a*c]])/Sqrt[b^2 - 4*a*c]

________________________________________________________________________________________

Rubi [A]  time = 0.0324579, antiderivative size = 36, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {1352, 618, 206} \[ \frac{2 \tanh ^{-1}\left (\frac{\frac{2 a}{x}+b}{\sqrt{b^2-4 a c}}\right )}{\sqrt{b^2-4 a c}} \]

Antiderivative was successfully verified.

[In]

Int[1/((c + a/x^2 + b/x)*x^2),x]

[Out]

(2*ArcTanh[(b + (2*a)/x)/Sqrt[b^2 - 4*a*c]])/Sqrt[b^2 - 4*a*c]

Rule 1352

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/n, Subst[Int[(a + b*x +
 c*x^2)^p, x], x, x^n], x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[n2, 2*n] && EqQ[Simplify[m - n + 1], 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{\left (c+\frac{a}{x^2}+\frac{b}{x}\right ) x^2} \, dx &=-\operatorname{Subst}\left (\int \frac{1}{c+b x+a x^2} \, dx,x,\frac{1}{x}\right )\\ &=2 \operatorname{Subst}\left (\int \frac{1}{b^2-4 a c-x^2} \, dx,x,b+\frac{2 a}{x}\right )\\ &=\frac{2 \tanh ^{-1}\left (\frac{b+\frac{2 a}{x}}{\sqrt{b^2-4 a c}}\right )}{\sqrt{b^2-4 a c}}\\ \end{align*}

Mathematica [A]  time = 0.0065326, size = 38, normalized size = 1.06 \[ \frac{2 \tan ^{-1}\left (\frac{b+2 c x}{\sqrt{4 a c-b^2}}\right )}{\sqrt{4 a c-b^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((c + a/x^2 + b/x)*x^2),x]

[Out]

(2*ArcTan[(b + 2*c*x)/Sqrt[-b^2 + 4*a*c]])/Sqrt[-b^2 + 4*a*c]

________________________________________________________________________________________

Maple [A]  time = 0., size = 35, normalized size = 1. \begin{align*} 2\,{\frac{1}{\sqrt{4\,ac-{b}^{2}}}\arctan \left ({\frac{2\,cx+b}{\sqrt{4\,ac-{b}^{2}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c+a/x^2+b/x)/x^2,x)

[Out]

2/(4*a*c-b^2)^(1/2)*arctan((2*c*x+b)/(4*a*c-b^2)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c+a/x^2+b/x)/x^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.7764, size = 277, normalized size = 7.69 \begin{align*} \left [\frac{\log \left (\frac{2 \, c^{2} x^{2} + 2 \, b c x + b^{2} - 2 \, a c - \sqrt{b^{2} - 4 \, a c}{\left (2 \, c x + b\right )}}{c x^{2} + b x + a}\right )}{\sqrt{b^{2} - 4 \, a c}}, -\frac{2 \, \sqrt{-b^{2} + 4 \, a c} \arctan \left (-\frac{\sqrt{-b^{2} + 4 \, a c}{\left (2 \, c x + b\right )}}{b^{2} - 4 \, a c}\right )}{b^{2} - 4 \, a c}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c+a/x^2+b/x)/x^2,x, algorithm="fricas")

[Out]

[log((2*c^2*x^2 + 2*b*c*x + b^2 - 2*a*c - sqrt(b^2 - 4*a*c)*(2*c*x + b))/(c*x^2 + b*x + a))/sqrt(b^2 - 4*a*c),
 -2*sqrt(-b^2 + 4*a*c)*arctan(-sqrt(-b^2 + 4*a*c)*(2*c*x + b)/(b^2 - 4*a*c))/(b^2 - 4*a*c)]

________________________________________________________________________________________

Sympy [B]  time = 0.202506, size = 124, normalized size = 3.44 \begin{align*} - \sqrt{- \frac{1}{4 a c - b^{2}}} \log{\left (x + \frac{- 4 a c \sqrt{- \frac{1}{4 a c - b^{2}}} + b^{2} \sqrt{- \frac{1}{4 a c - b^{2}}} + b}{2 c} \right )} + \sqrt{- \frac{1}{4 a c - b^{2}}} \log{\left (x + \frac{4 a c \sqrt{- \frac{1}{4 a c - b^{2}}} - b^{2} \sqrt{- \frac{1}{4 a c - b^{2}}} + b}{2 c} \right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c+a/x**2+b/x)/x**2,x)

[Out]

-sqrt(-1/(4*a*c - b**2))*log(x + (-4*a*c*sqrt(-1/(4*a*c - b**2)) + b**2*sqrt(-1/(4*a*c - b**2)) + b)/(2*c)) +
sqrt(-1/(4*a*c - b**2))*log(x + (4*a*c*sqrt(-1/(4*a*c - b**2)) - b**2*sqrt(-1/(4*a*c - b**2)) + b)/(2*c))

________________________________________________________________________________________

Giac [A]  time = 1.12915, size = 46, normalized size = 1.28 \begin{align*} \frac{2 \, \arctan \left (\frac{2 \, c x + b}{\sqrt{-b^{2} + 4 \, a c}}\right )}{\sqrt{-b^{2} + 4 \, a c}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c+a/x^2+b/x)/x^2,x, algorithm="giac")

[Out]

2*arctan((2*c*x + b)/sqrt(-b^2 + 4*a*c))/sqrt(-b^2 + 4*a*c)